227 research outputs found

    Minor Loops in Major Folds: Enhancer-Promoter Looping, Chromatin Restructuring, and Their Association with Transcriptional Regulation and Disease.

    Get PDF
    The organization and folding of chromatin within the nucleus can determine the outcome of gene expression. Recent technological advancements have enabled us to study chromatin interactions in a genome-wide manner at high resolution. These studies have increased our understanding of the hierarchy and dynamics of chromatin domains that facilitate cognate enhancer-promoter looping, defining the transcriptional program of different cell types. In this review, we focus on vertebrate chromatin long-range interactions as they relate to transcriptional regulation. In addition, we describe how the alteration of boundaries that mark discrete regions in the genome with high interaction frequencies within them, called topological associated domains (TADs), could lead to various phenotypes, including human diseases, which we term as "TADopathies.

    The human ARF tumor suppressor senses blastema activity and suppresses epimorphic tissue regeneration.

    Get PDF
    The control of proliferation and differentiation by tumor suppressor genes suggests that evolution of divergent tumor suppressor repertoires could influence species regenerative capacity. To directly test that premise, we humanized the zebrafish p53 pathway by introducing regulatory and coding sequences of the human tumor suppressor ARF into the zebrafish genome. ARF was dormant during development, in uninjured adult fins, and during wound healing, but was highly expressed in the blastema during epimorphic fin regeneration after amputation. Regenerative, but not developmental signals resulted in binding of zebrafish E2f to the human ARF promoter and activated conserved ARF-dependent Tp53 functions. The context-dependent activation of ARF did not affect growth and development but inhibited regeneration, an unexpected distinct tumor suppressor response to regenerative versus developmental environments. The antagonistic pleiotropic characteristics of ARF as both tumor and regeneration suppressor imply that inducing epimorphic regeneration clinically would require modulation of ARF -p53 axis activation

    A genome-wide association study identifies four novel susceptibility loci underlying inguinal hernia.

    Get PDF
    Inguinal hernia repair is one of the most commonly performed operations in the world, yet little is known about the genetic mechanisms that predispose individuals to develop inguinal hernias. We perform a genome-wide association analysis of surgically confirmed inguinal hernias in 72,805 subjects (5,295 cases and 67,510 controls) and confirm top associations in an independent cohort of 92,444 subjects with self-reported hernia repair surgeries (9,701 cases and 82,743 controls). We identify four novel inguinal hernia susceptibility loci in the regions of EFEMP1, WT1, EBF2 and ADAMTS6. Moreover, we observe expression of all four genes in mouse connective tissue and network analyses show an important role for two of these genes (EFEMP1 and WT1) in connective tissue maintenance/homoeostasis. Our findings provide insight into the aetiology of hernia development and highlight genetic pathways for studies of hernia development and its treatment

    Functionally conserved enhancers with divergent sequences in distant vertebrates

    Get PDF
    Conserved transcription factor binding motifs in the five zebrafish/mouse syntenic enhancers. Identical n-mers (n ≥ 7) identified in the zebrafish, mouse, and human sequences of the five syntenic CNS were examined for the presence of transcription factor binding motifs; only motifs with E-value E ≤ 0.1 are shown. (XLSX 15 kb
    • …
    corecore